
Exercise 6 - Extra Machine Learning I MASTER 2024

1 Optimization of SVM

A: Convex Optimization: multiplicity of solution in SVM SVM is based on solving a convex
optimization problem, where the objective function ∥w∥2 is strictly convex. As discussed in the lecture,
while the convex problem admits a single global optimum and hence leads to a unique vector w inℜN ,
there can be multiple ways in which w is constructed. Indeed, w is constructed as a linear combination
of support vectors. If one has at disposal a set of K linearly independent support vectors with K > N ,
then there exists more than one combination of scalars αi, i = 1...K, such that w =

∑
i = 1Kαix

i is
not unique.

Convince yourself that this is the case when considering the linear SVM case, assuming that N = 2
and that you have at your disposal 3 non-zero and not-collinear vector point xi, i = 1, 2, 3 that satisfy
the constraint yi(w

Txi + b) = 1,∀i. Show that there exist another combination of points that can
construct w.

B: Margin The constraints of the SVM problem specify that all support vectors should lie on either
of the two hyperplanes parallel to the separating hyperplane with equations wTx+ b = ±1. Show that
the constant 1 is arbitrary and does not affect the solution.

C: Convexity of the relaxed problem: Is f(w, ξ) = ∥w∥2 +
∑

i ξ, ξ > 0∀i convex?

D: Optimum of the relaxed problem: The introduction of slack variables in the SVM optimiza-
tion allows to find a solution to a problem that would otherwise been deemed infeasible. The drawback
is that the slack leads to solutions that are ”suboptimal”. Note that the problem remains convex, but
the slacks shift the optimum to a value different from the true optimum.

Prove first that the problem remains convex. Recall the conditions for convexity and strict convexity:
a convex function f is such that f(λx+ (1− λ)y ≤ f(λx) + f((1− λ)y). Strict convexity arise when
the inequality is replaced by a strict inequality (< in place of ≤).

Prove that the optimum in the relaxed problem is identical to the original problem only under certain
conditions for the linear SVM problem.
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